Specific Bacterial Suppressors of MAMP Signaling Upstream of MAPKKK in Arabidopsis Innate Immunity

نویسندگان

  • Ping He
  • Libo Shan
  • Nai-Chun Lin
  • Gregory B. Martin
  • Birgit Kemmerling
  • Thorsten Nürnberger
  • Jen Sheen
چکیده

Plants and animals possess innate immune systems to prevent infections and are effectively "nonhosts" for most potential pathogens. The molecular mechanisms underlying nonhost immunity in plants remain obscure. In Arabidopsis, nonhost/nonpathogenic Pseudomonas syringae sustains but pathogenic P. syringae suppresses early MAMP (microbe-associated molecular pattern) marker-gene activation. We performed a cell-based genetic screen of virulence factors and identified AvrPto and AvrPtoB as potent and unique suppressors of early-defense gene transcription and MAP kinase (MAPK) signaling. Unlike effectors of mammalian pathogens, AvrPto and AvrPtoB intercept multiple MAMP-mediated signaling upstream of MAPKKK at the plasma membrane linked to the receptor. In transgenic Arabidopsis, AvrPto blocks early MAMP signaling and enables nonhost P. syringae growth. Deletions of avrPto and avrPtoB from pathogenic P. syringae reduce its virulence. The studies reveal a fundamental role of MAMP signaling in nonhost immunity, and a novel action of type III effectors from pathogenic bacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Getting to PTI of bacterial RNAs: Triggering plant innate immunity by extracellular RNAs from bacteria.

Defense against diverse biotic and abiotic stresses requires the plant to distinguish between self and non-self signaling molecules. Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are pivotal for triggering innate immunity in plants. Unlike in animals and humans, the precise roles of nucleic acids in plant innate immunity are unclear. We therefore investigated the effects of infil...

متن کامل

Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity.

Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of b...

متن کامل

SnapShot: Plant Immune Response Pathways

Recognition of Microbe/Pathogen-Associated Molecular Patterns Plant innate immunity depends on the timely discrimination of self from nonself, which, as in animal cells, can be accomplished by membrane-anchored pattern recognition receptors (PRRs). These receptors monitor the exterior space for microbe/pathogen-associated molecular patterns or MAMPs (also called PAMPs) by binding to them direct...

متن کامل

ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis.

Conserved microbe-associated molecular patterns (MAMPs) are sensed by pattern recognition receptors (PRRs) on cells of plants and animals. MAMP perception typically triggers rearrangements to actin cytoskeletal arrays during innate immune signaling. However, the signaling cascades linking PRR activation by MAMPs to cytoskeleton remodeling are not well characterized. Here, we developed a system ...

متن کامل

Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana.

Binding of specific microbial epitopes [MAMPs (microbe-associated molecular patterns)] to PRRs (pattern recognition receptors) and subsequent receptor kinase activation are key steps in plant innate immunity. One of the earliest detectable events after MAMP perception is a rapid and transient rise in cytosolic Ca2+ levels. In plants, knowledge about the signalling events leading to Ca2+ influx ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 125  شماره 

صفحات  -

تاریخ انتشار 2006